KissCount 0.6
Une nouvelle version qui corrige quelques bugs introduits par les étiquettes (tags). On notera aussi que le focus est désormais sur le nom d'utilisateur pour la partie web.
Paquet mis à jour sur ma forge.
Une nouvelle version qui corrige quelques bugs introduits par les étiquettes (tags). On notera aussi que le focus est désormais sur le nom d'utilisateur pour la partie web.
Paquet mis à jour sur ma forge.
"J'ai la fleeeeeeeeeeeeeemme" principale excuse de la question : "Est-ce que tu as fait une sauvegarde de tes données ?" Oui, mais en fait non ! Comme je l'indiquais dans cet article, il faut en faire tous les 6 mois/1 an à minima.
Car, quand la carte mère subit un choc qui provoque un court-circuit sur le disque et que le moteur fonctionne en mode très dégradé empêchant de lire correctement les secteurs, et bien c'est un, cinq, dix ans de données qui sont perdues ! Ne parlons même pas de la destruction par l'eau ou le feu qui est irrémédiable. Pire encore : le vol pur et simple !
Dans notre cas, le disque fonctionne en mode dégradé : lecture poussive mais pas impossible (par contre il refuse de se faire monter). Trois options s'offrent alors :
J'ai choisi d'utiliser la dernière option (le disque ne m'appartient pas). Résultat, il a fallu 10 jours pour l'analyse des quelques 500Go. Photorec fait une lecture secteur par secteur et tente de retrouver la structure des fichiers qu'il connaît (les fichiers multimédias sont bien reconnus). C'est le genre de logiciel qui sauve des vies !
Néanmoins, les méta données sauvegardées dans le système de fichier (nom, emplacement, date) ne sont pas restaurées. On se retrouve donc avec des tas de fichiers de type : recup_dir.x/fXXXXXXX.zzz qu'il faut trier et renommer à la main. Pour effectuer un pré traitement de cet amas, j'ai écrit un petit script Python Photorec stage 2, chargé de la seconde étape d'une récupération photorec. Initialement, il ne devait détecter que les fichiers MS Office et Open Office à partir d'un fichier zip, mais au final il en fait bien plus.
Fonctions principales :
Voilà de quoi dégrossir le travail (particulièrement efficace pour regrouper les photos d'un même album). Le tout est disponible sur ma forge avec une licence GPL v3.
Après avoir ouvert le champomy pour les 6 ans du blog, je reviens rapidement sur IWLA car j'aime m'auto extasier sur ce petit outil. L'idée de base était de remplacer AWSTATS par quelque chose de plus facilement "hackable", ce qui est chose faite. Si on rajoute la concision du langage Python par dessus, on obtient un script du genre :
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import argparse
import gzip
import pickle
import re
import operator
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Statistics extraction')
parser.add_argument('-f', '--file', dest='file',
help='Comma separated IWLA databases')
args = parser.parse_args()
blog_re = re.compile(r'^.*blog\.soutade\.fr\/post\/.*$')
big_stats = {}
for filename in args.file.split(','):
with gzip.open(filename, 'r') as f:
print 'open %s' % (filename)
stats = pickle.load(f)
print 'unzipped %s' % (filename)
top_pages = stats['month_stats']['top_pages']
for (uri, count) in top_pages.items():
if not blog_re.match(uri):
continue
big_stats[uri] = big_stats.get(uri,0) + count
print 'analyzed %s' % (filename)
print '\n\nResults\n\n'
for (uri, count) in sorted(big_stats.items(), key=operator.itemgetter(1), reverse=True)[:10]:
print '%s => %d' % (uri, count)
Que fait-il ? Il va tout simplement appliquer un filtre sur les pages du blog qui concernent les articles pour en extraire les 10 les plus consultées. Ce qui me fait gagner du temps pour mon bilan annuel !
Bien sûr, on peut créer des tas d'outil indépendants qui vont extraire et manipuler les données pour les mettre en forme, le tout avec une facilité déconcertante. Mieux encore, créer un plugin pour l'intégrer directement dans la sortie HTML quand ceci est nécessaire !
Do It Yourself, make your own objects, this is in vogue. Since the first version RaspberryPI, we can see a lot of little boards with GPIO connections that handles basic sensors/connectors. Even if some prefer to use wireless communications to communicate with these little devices, USB is still there !
Today I'll show an example of a basic raw bulk USB communication. We could setup our device with the serial line gadget (/dev/ttyGS0), but if you need performance or you want to handle specific USB feature, it's interesting to use raw transfers. Plus, all of this is done in userspace thanks to GadgetFS.
I waste a lot of time due to a buggy USB driver (dwc2), but, finally, the right code is simple.
All technical details about USB can be found within usb.org or linux-usb.org, it's quite heavy. Basically, USB communication use a master/slave schema : host side (mainly a PC) sends requests to device side (device). Device never asks questions, it only replies.
Configuration of USB port can be static (host or device) or dynamic. This is the case for DRD (Dual Role Device) configurations, which was previously called OTG (On The Go : who is the first to talk ?).
On the device, we have endpoints grouped into interfaces. Each endpoint contains a hardware buffer (memory) to deal with requests. An endpoint is setup (hardcoded) to be in or out, meaning, it can do only "in" or "out" operation.
In addition to direction, the type of endpoint is important (it's assigned during endpoint configuration). It can be :
A special endpoint called ep0 (the first one) is always present. It's an in and out endpoint with control attribute. It allows to read/write configuration of other endpoints.
All these information are described in descriptors. You can look at them with
lsusb -v
The low level command sent to controller is called an URB (USB Request Block).
A picture to sum up :
First thing to do is to enable GadgetFS in the kernel you're running (if it's not already the case).
Run make menuconfig [ARCH=XXX] in the kernel build directory. Then, enable
Device Drivers -> USB support -> USB Gadget Support -> USB Gadget Drivers -> Gadget Filesystem
In the same section (or in the section above depending on your controller), select the right Peripheral Controller.
You can now rebuild your Linux kernel.
Once booted, mount GadgetFS (in /dev for example)
mkdir /dev/gadget
mount -t gadgetfs gadgetfs /dev/gadget
There is a reference code that can be found in linux-usb.org which manage everything and can use aio for asynchronous requests management. Mine is simpler, full code link can be found in Conclusion part. I'll explain each parts in details.
Let's start. Do includes. usbtring.c is copied from linux-usb.org (strings sent back to host must be encoded in UTF-16). Most of structures and defines are referenced in ch9.h (which corresponds to chapter 9 of the USB norm) and gadgetfs.h
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/select.h>
#include <linux/types.h>
#include <linux/usb/ch9.h>
#include <linux/usb/gadgetfs.h>
#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>
#include <stdint.h>
#include <string.h>
#include <pthread.h>
#include <errno.h>
#include "usbstring.c"
Then, defines
#define FETCH(_var_) \
memcpy(cp, &_var_, _var_.bLength); \
cp += _var_.bLength;
#define CONFIG_VALUE 2
// Specific to controller
#define USB_DEV "/dev/gadget/dwc2"
#define USB_EPIN "/dev/gadget/ep1in"
#define USB_EPOUT "/dev/gadget/ep2out"
enum {
STRINGID_MANUFACTURER = 1,
STRINGID_PRODUCT,
STRINGID_SERIAL,
STRINGID_CONFIG_HS,
STRINGID_CONFIG_LS,
STRINGID_INTERFACE,
STRINGID_MAX
};
Config value is the number of endpoints. After that, we have paths relative to GadgetFS. When mounted, there is only USB_DEV, endpoints appears after the first configuration (ep0). Name of endpoints is dependent of the driver implementation.
Structures and static variables :
struct io_thread_args {
unsigned stop;
int fd_in, fd_out;
};
static struct io_thread_args thread_args;
static struct usb_string stringtab [] = {
{ STRINGID_MANUFACTURER, "MyOwnGadget", },
{ STRINGID_PRODUCT, "Custom gadget", },
{ STRINGID_SERIAL, "0001", },
{ STRINGID_CONFIG_HS, "High speed configuration", },
{ STRINGID_CONFIG_LS, "Low speed configuration", },
{ STRINGID_INTERFACE, "Custom interface", },
{ STRINGID_MAX, NULL},
};
static struct usb_gadget_strings strings = {
.language = 0x0409, /* en-us */
.strings = stringtab,
};
static struct usb_endpoint_descriptor ep_descriptor_in;
static struct usb_endpoint_descriptor ep_descriptor_out;
The main thing here is the description of strings inside stringtag that will be parsed by usbstring functions.
int main()
{
int fd=-1, ret, err=-1;
uint32_t send_size;
struct usb_config_descriptor config;
struct usb_config_descriptor config_hs;
struct usb_device_descriptor device_descriptor;
struct usb_interface_descriptor if_descriptor;
uint8_t init_config[2048];
uint8_t* cp;
fd = open(USB_DEV, O_RDWR|O_SYNC);
if (fd <= 0)
{
printf("Unable to open %s (%m)\n", USB_DEV);
return 1;
}
*(uint32_t*)init_config = 0;
cp = &init_config[4];
device_descriptor.bLength = USB_DT_DEVICE_SIZE;
device_descriptor.bDescriptorType = USB_DT_DEVICE;
device_descriptor.bDeviceClass = USB_CLASS_COMM;
device_descriptor.bDeviceSubClass = 0;
device_descriptor.bDeviceProtocol = 0;
//device_descriptor.bMaxPacketSize0 = 255; Set by driver
device_descriptor.idVendor = 0xAA; // My own id
device_descriptor.idProduct = 0xBB; // My own id
device_descriptor.bcdDevice = 0x0200; // Version
// Strings
device_descriptor.iManufacturer = STRINGID_MANUFACTURER;
device_descriptor.iProduct = STRINGID_PRODUCT;
device_descriptor.iSerialNumber = STRINGID_SERIAL;
device_descriptor.bNumConfigurations = 1; // Only one configuration
ep_descriptor_in.bLength = USB_DT_ENDPOINT_SIZE;
ep_descriptor_in.bDescriptorType = USB_DT_ENDPOINT;
ep_descriptor_in.bEndpointAddress = USB_DIR_IN | 1;
ep_descriptor_in.bmAttributes = USB_ENDPOINT_XFER_BULK;
ep_descriptor_in.wMaxPacketSize = 512; // HS size
ep_descriptor_out.bLength = USB_DT_ENDPOINT_SIZE;
ep_descriptor_out.bDescriptorType = USB_DT_ENDPOINT;
ep_descriptor_out.bEndpointAddress = USB_DIR_OUT | 2;
ep_descriptor_out.bmAttributes = USB_ENDPOINT_XFER_BULK;
ep_descriptor_out.wMaxPacketSize = 512; // HS size
if_descriptor.bLength = sizeof(if_descriptor);
if_descriptor.bDescriptorType = USB_DT_INTERFACE;
if_descriptor.bInterfaceNumber = 0;
if_descriptor.bAlternateSetting = 0;
if_descriptor.bNumEndpoints = 2;
if_descriptor.bInterfaceClass = USB_CLASS_COMM;
if_descriptor.bInterfaceSubClass = 0;
if_descriptor.bInterfaceProtocol = 0;
if_descriptor.iInterface = STRINGID_INTERFACE;
config_hs.bLength = sizeof(config_hs);
config_hs.bDescriptorType = USB_DT_CONFIG;
config_hs.wTotalLength = config_hs.bLength +
if_descriptor.bLength + ep_descriptor_in.bLength + ep_descriptor_out.bLength;
config_hs.bNumInterfaces = 1;
config_hs.bConfigurationValue = CONFIG_VALUE;
config_hs.iConfiguration = STRINGID_CONFIG_HS;
config_hs.bmAttributes = USB_CONFIG_ATT_ONE | USB_CONFIG_ATT_SELFPOWER;
config_hs.bMaxPower = 1;
config.bLength = sizeof(config);
config.bDescriptorType = USB_DT_CONFIG;
config.wTotalLength = config.bLength +
if_descriptor.bLength + ep_descriptor_in.bLength + ep_descriptor_out.bLength;
config.bNumInterfaces = 1;
config.bConfigurationValue = CONFIG_VALUE;
config.iConfiguration = STRINGID_CONFIG_LS;
config.bmAttributes = USB_CONFIG_ATT_ONE | USB_CONFIG_ATT_SELFPOWER;
config.bMaxPower = 1;
FETCH(config);
FETCH(if_descriptor);
FETCH(ep_descriptor_in);
FETCH(ep_descriptor_out);
FETCH(config_hs);
FETCH(if_descriptor);
FETCH(ep_descriptor_in);
FETCH(ep_descriptor_out);
FETCH(device_descriptor);
// Configure ep0
send_size = (uint32_t)cp-(uint32_t)init_config;
ret = write(fd, init_config, send_size);
if (ret != send_size)
{
printf("Write error %d (%m)\n", ret);
goto end;
}
printf("ep0 configured\n");
handle_ep0(fd);
end:
if (fd != -1) close(fd);
return err;
}
The main function. We build the descriptors and send them to ep0. It's needed to send both low/full speed (USB 1) and high speed (USB 2) configurations. Here, they are quite the same. We have only one interface with two endpoints, one for in, and one for out. Descriptors are sent as a big char array that must starts by an uint32_t tag set to 0. All values are expressed in little endian.
ep0 function :
static void handle_ep0(int fd)
{
int ret, nevents, i;
fd_set read_set;
struct usb_gadgetfs_event events[5];
while (1)
{
FD_ZERO(&read_set);
FD_SET(fd, &read_set);
select(fd+1, &read_set, NULL, NULL, NULL);
ret = read(fd, &events, sizeof(events));
if (ret < 0)
{
printf("Read error %d (%m)\n", ret);
goto end;
}
nevents = ret / sizeof(events[0]);
printf("%d event(s)\n", nevents);
for (i=0; i<nevents; i++)
{
switch (events[i].type)
{
case GADGETFS_CONNECT:
printf("EP0 CONNECT\n");
break;
case GADGETFS_DISCONNECT:
printf("EP0 DISCONNECT\n");
break;
case GADGETFS_SETUP:
printf("EP0 SETUP\n");
handle_setup_request(fd, &events[i].u.setup);
break;
case GADGETFS_NOP:
case GADGETFS_SUSPEND:
break;
}
}
}
end:
return;
}
This one receives events and handle them. The most important are setup requests, which are requests that kernel cannot full handle by itself (or notice userspace).
static void handle_setup_request(int fd, struct usb_ctrlrequest* setup)
{
int status;
uint8_t buffer[512];
pthread_t thread;
printf("Setup request %d\n", setup->bRequest);
switch (setup->bRequest)
{
case USB_REQ_GET_DESCRIPTOR:
if (setup->bRequestType != USB_DIR_IN)
goto stall;
switch (setup->wValue >> 8)
{
case USB_DT_STRING:
printf("Get string id #%d (max length %d)\n", setup->wValue & 0xff,
setup->wLength);
status = usb_gadget_get_string (&strings, setup->wValue & 0xff, buffer);
// Error
if (status < 0)
{
printf("String not found !!\n");
break;
}
else
{
printf("Found %d bytes\n", status);
}
write (fd, buffer, status);
return;
default:
printf("Cannot return descriptor %d\n", (setup->wValue >> 8));
}
break;
case USB_REQ_SET_CONFIGURATION:
if (setup->bRequestType != USB_DIR_OUT)
{
printf("Bad dir\n");
goto stall;
}
switch (setup->wValue) {
case CONFIG_VALUE:
printf("Set config value\n");
if (!thread_args.stop)
{
thread_args.stop = 1;
usleep(200000); // Wait for termination
}
if (thread_args.fd_in <= 0)
{
status = init_ep (&thread_args.fd_in, &thread_args.fd_out);
}
else
status = 0;
if (!status)
{
thread_args.stop = 0;
pthread_create(&thread, NULL, io_thread, &thread_args);
}
break;
case 0:
printf("Disable threads\n");
thread_args.stop = 1;
break;
default:
printf("Unhandled configuration value %d\n", setup->wValue);
break;
}
// Just ACK
status = read (fd, &status, 0);
return;
case USB_REQ_GET_INTERFACE:
printf("GET_INTERFACE\n");
buffer[0] = 0;
write (fd, buffer, 1);
return;
case USB_REQ_SET_INTERFACE:
printf("SET_INTERFACE\n");
ioctl (thread_args.fd_in, GADGETFS_CLEAR_HALT);
ioctl (thread_args.fd_out, GADGETFS_CLEAR_HALT);
// ACK
status = read (fd, &status, 0);
return;
}
stall:
printf("Stalled\n");
// Error
if (setup->bRequestType & USB_DIR_IN)
read (fd, &status, 0);
else
write (fd, &status, 0);
}
A bad response within this function can stall the endpoint. Two principle functions are to send back strings (not managed by driver) and starts/stop io_thread().
The init_ep() function is pretty simple. It justs sends endpoint descriptors (in low/full and high speed configuration). Like ep0, it must starts with an uint32_t tag of value 1 :
static int init_ep(int* fd_in, int* fd_out)
{
uint8_t init_config[2048];
uint8_t* cp;
int ret = -1;
uint32_t send_size;
// Configure ep1 (low/full speed + high speed)
*fd_in = open(USB_EPIN, O_RDWR);
if (*fd_in <= 0)
{
printf("Unable to open %s (%m)\n", USB_EPIN);
goto end;
}
*(uint32_t*)init_config = 1;
cp = &init_config[4];
FETCH(ep_descriptor_in);
FETCH(ep_descriptor_in);
send_size = (uint32_t)cp-(uint32_t)init_config;
ret = write(*fd_in, init_config, send_size);
if (ret != send_size)
{
printf("Write error %d (%m)\n", ret);
goto end;
}
printf("ep1 configured\n");
// Configure ep2 (low/full speed + high speed)
*fd_out = open(USB_EPOUT, O_RDWR);
if (*fd_out <= 0)
{
printf("Unable to open %s (%m)\n", USB_EPOUT);
goto end;
}
*(uint32_t*)init_config = 1;
cp = &init_config[4];
FETCH(ep_descriptor_out);
FETCH(ep_descriptor_out);
send_size = (uint32_t)cp-(uint32_t)init_config;
ret = write(*fd_out, init_config, send_size);
if (ret != send_size)
{
printf("Write error %d (%m)\n", ret);
goto end;
}
printf("ep2 configured\n");
ret = 0;
end:
return ret;
}
Finally, the io_thread() that responds to host requests. Here, I use select, but it seems not to be handled by driver, I/Os are just blocking, but it could be necessary if we want to stop thread.
/*
* Respond to host requests
*/
static void* io_thread(void* arg)
{
struct io_thread_args* thread_args = (struct io_thread_args*)arg;
fd_set read_set, write_set;
struct timeval timeout;
int ret, max_read_fd, max_write_fd;
char buffer[512];
max_read_fd = max_write_fd = 0;
if (thread_args->fd_in > max_write_fd) max_write_fd = thread_args->fd_in;
if (thread_args->fd_out > max_read_fd) max_read_fd = thread_args->fd_out;
while (!thread_args->stop)
{
FD_ZERO(&read_set);
FD_SET(thread_args->fd_out, &read_set);
timeout.tv_sec = 0;
timeout.tv_usec = 10000; // 10ms
memset(buffer, 0, sizeof(buffer));
ret = select(max_read_fd+1, &read_set, NULL, NULL, &timeout);
// Timeout
if (ret == 0)
continue;
// Error
if (ret < 0)
break;
ret = read (thread_args->fd_out, buffer, sizeof(buffer));
if (ret > 0)
printf("Read %d bytes : %s\n", ret, buffer);
else
printf("Read error %d(%m)\n", ret);
FD_ZERO(&write_set);
FD_SET(thread_args->fd_in, &write_set);
memset(buffer, 0, sizeof(buffer));
ret = select(max_write_fd+1, NULL, &write_set, NULL, NULL);
// Error
if (ret < 0)
break;
strcpy(buffer, "My name is USBond !");
ret = write (thread_args->fd_in, buffer, strlen(buffer)+1);
printf("Write status %d (%m)\n", ret);
}
close (thread_args->fd_in);
close (thread_args->fd_out);
thread_args->fd_in = -1;
thread_args->fd_out = -1;
return NULL;
}
Host part is very easy to implement. This part can be handled by libusb for a more complete and generic code.
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <linux/usbdevice_fs.h>
#include <linux/usb/ch9.h>
#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>
#include <stdint.h>
#include <string.h>
#define USB_DEV "/proc/bus/usb/001/002"
int main()
{
int fd, ret, err=-1;
struct usbdevfs_connectinfo connectinfo;
struct usbdevfs_bulktransfer transfert;
uint32_t val;
char buffer[512];
printf("Build %s @ %s\n", __DATE__, __TIME__);
fd = open(USB_DEV, O_RDWR);
if (fd <= 0)
{
printf("Unable to open %s (%m)\n", USB_DEV);
return 1;
}
printf("Device opened\n");
// Optional get information
ret = ioctl(fd, USBDEVFS_CONNECTINFO, &connectinfo);
if (ret)
{
printf("USBDEVFS_CONNECTINFO error %d (%m)\n", ret);
goto end;
}
printf("devnum %d, slow %d\n",
connectinfo.devnum, connectinfo.slow);
// Claim interface 0
val = 0;
ret = ioctl(fd, USBDEVFS_CLAIMINTERFACE, &val);
if (ret)
{
printf("USBDEVFS_CLAIMINTERFACE error %d (%m)\n", ret);
goto end;
}
else
printf("Interface claimed\n");
// Send data on ep2out
strcpy(buffer, "What is your name ?");
transfert.ep = USB_DIR_OUT + 2;
transfert.len = strlen(buffer)+1;
transfert.timeout = 200;
transfert.data = buffer;
ret = ioctl(fd, USBDEVFS_BULK, &transfert);
if (ret < 0)
{
printf("USBDEVFS_BULK 1 error %d (%m)\n", ret);
goto end;
}
else
printf("Transfert 1 OK %d\n", ret);
// Receive data on ep1in
transfert.ep = USB_DIR_IN + 1;
transfert.len = sizeof(buffer);
transfert.timeout = 200;
transfert.data = buffer;
ret = ioctl(fd, USBDEVFS_BULK, &transfert);
if (ret < 0)
{
printf("USBDEVFS_BULK 2 error %d (%m)\n", ret);
goto end;
}
else
printf("Transfert 2 OK %d %s\n", ret, buffer);
// Release interface 0
val = 0;
ret = ioctl(fd, USBDEVFS_RELEASEINTERFACE, &val);
if (ret)
{
printf("USBDEVFS_RELEASEINTERFACE error %d (%m)\n", ret);
goto end;
}
printf("Interface released\n");
err = 0;
end:
close(fd);
return err;
}
To start, we claim an interface. This ioctl fully handled in host side driver (nothing is send to device). After that, a simple send/receive protocol. Finally we release interface. be carreful, USB_DEV path change when the device is disconnected.
The full code can be found on my server. This basic example can be extended a lot : isochronous, asynch requests, streams (USB 3). Enjoy !
This was my problem for Dynastie (a static blog generator). I have a main super class Post and a derived class Draft that directly inherit from the first one.
class Post(models.Model):
title = models.CharField(max_length=255)
category = models.ForeignKey(Category, blank=True, null=True, on_delete=models.SET_NULL)
creation_date = models.DateTimeField()
modification_date = models.DateTimeField()
author = models.ForeignKey(User, null=True, on_delete=models.SET_NULL)
description = models.TextField(max_length=255, blank=True)
...
class Draft(Post):
pass
A draft is a note that will not be published soon. When it's published, the creation date is reset. Using POO and inheritance, it's quick and easy to model this behavior. Nevertheless, there is one problem. When I do Post.objects.all() I get all Post objects + all Draft objects, which is not what I want !!
The trick to obtain only Post is a mix with Python and Django mechanisms called Managers. Managers are at the top level of QuerySet construction. To solve our problem, we'll override the models.Model attribute objects (which is a models.Manager).
To find a solution, we need to know what exactly happens when we do inheritance. The best thing to do, is to inspect the database.
CREATE TABLE "dynastie_post" (
"id" integer NOT NULL PRIMARY KEY,
"title" varchar(255) NOT NULL,
"category_id" integer REFERENCES "dynastie_category" ("id"),
"creation_date" datetime NOT NULL,
"modification_date" datetime NOT NULL,
"author_id" integer REFERENCES "auth_user" ("id"),
"description" text NOT NULL);
CREATE TABLE "dynastie_draft" (
"post_ptr_id" integer NOT NULL PRIMARY KEY REFERENCES "dynastie_post" ("id")
);
We can see that dynastie_draft has a reference to the dynastie_post table. So, doing Post.objects.all() is like writing "SELECT * from dynastie_post" that includes Post part of drafts.
The first solution is to create a Manager that will exclude draft id from the request. It has the advantage to keep base class as is, but it's not efficient (especially if there is a lot of child objects).
class PostOnlyManager(models.Manager):
def get_queryset(self):
query_set = super(PostOnlyManager, self).get_queryset()
drafts = Draft.objects.all().only("id")
return query_set.exclude(id__in=[draft.id for draft in drafts])
class Post(models.Model):
objects = PostOnlyManager()
class Draft(Post):
objects = models.Manager()
With this solution, we do two requests at each access. Plus, it's necessary to know every sub class we want to exclude. We have to keep the BaseManager for all subclasses. You can note the use of only method to limit the query and de serialization to minimum required.
The solution here is to add a field called type that will be filtered in the query set. It's the recommended one in the Django documentation.
class PostOnlyManager(models.Manager):
def get_query_set(self):
return super(PostOnlyManager, self).get_queryset().filter(post_type='P')
class Post(models.Model):
objects = PostOnlyManager()
post_type = models.CharField(max_length=1, default='P')
class Draft(Post):
objects = models.Manager()
@receiver(pre_save, sender=Draft)
def pre_save_draft_signal(sender, **kwargs):
kwargs['instance'].post_type = 'D'
The problem here is the add of one field which increase database size, but filtering is easier and is done in the initial query. Plus, it's more flexible with many classes. I used a signal to setup post_type value, didn't found a better solution for now.
Depending on your constraints you can use the solution 1 or 2. These solutions can also be extended to a more complex filtering mechanism by dividing your class tree in different families.